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A particular virial equation of state is proposed for calculation of residual ther- 
modynamic properties of real gases. It uses an infinite, nontruncated series of 
terms, but simplified, temperature-independent values of the virial coefficients 
are suggested beyond the third. Range limits of applicability are investigated 
along with their possible extensions. Within these range limits the suggested 
equation defines all residual thermodynamic properties of real gases and their 
mixtures, including partial molar residual properties of each component in the 
latter. Comparison with experimental evidence and with data calculated by 
other methods is discussed. 

KEY WORDS: differential coefficients; real gases; residual properties; ther- 
modynamic properties; virial coefficients. 

1. INTRODUCTION 

This paper treats residual properties of gases in such a range of parameters 
where adequate description of these properties by an analytical equation of 
state (EOS), explicit in pressure, is possible. Within the above range, this 
paper deals with all thermodynamic properties of gases. Suggestions are 
made for a derivation of transport properties from the information used to 
describe the thermodynamic properties. The results are compared with 
experimental evidence. 

The subject reflects the results of continuing research, the initial con- 
cept of which was published in 1990 by the author [ I ]. The present text 
is, however, self-contained and does not require consultation of the 
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previous publication. The results of this work serve as one of the bases of 
a computer program system which is useful in determining properties of 
matter by a wide range of users. 

Among a great number of the available EOS, the virial one (VEOS) 
is still the only one which defines not only the properties of pure gases, but 
also those of gas mixtures as soon as a minimum of additional experi- 
mental data on the latter is available. The particular form of the VEOS 
described in this paper covers a large, albeit still limited range of 
parameters. At subcritical temperatures this range is restricted to the vapor 
phase, including subcooled vapors, up to densities at which the isothermal 
pressure derivative with respect to the density remains positive. At super- 
critical temperatures the limits of the reduced (i.e., related to the critical 
value) density are between 0.6 and 2, depending on the temperature and 
desired accuracy. 

Additive terms to the VEOS or any other EOS are necessary to extend 
the range of validity to the surroundings of the critical point of any pure 
gas or of the loci of critical parameters of any gas mixture. Recent advances 
in this field are discussed in Sections 5 and 9. 

2. POSTULATES 

The proposed VEOS is based on the available experimental evidence 
and on the following regularities deduced therefrom. 

(a) All virial coefficients B( T), C( T), D( T), etc. (second, third, 
fourth, and so on), as well as all their temperature derivatives, 
each plotted as a function of temperature T, have a similar shape. 
In particular, their values approach negative infinity for even and 
positive infinity for odd derivatives, respectively, if the absolute 
temperature approaches zero. At the other end of the tem- 
perature scale, the virial coefficients approach a constant value, 
positive for the zeroth derivative and zero for all other 
derivatives. Between these two limits a single extreme value 
appears for each of the functions under consideration: a maxi- 
mum or min imum for the even or odd derivatives, respec- 
tively. The position of any one of these extreme values moves 
toward decreasing temperatures with rising order off the 
derivative. All functions are monotonic on each side of the 
extreme value. 

(b) Within the already mentioned range of validity (which is further 
described in Section 3), virial coefficients of various number and 
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their temperature derivatives contribute quite differently to the 
residual properties of gases. It can, however, be observed that the 
absolute values of such contributions decrease with the rising 
number of the virial coefficient and, except between the zero and 
the extreme value of the ordinate, with rising temperature. 
Furthermore, it appears that the high-temperature asymptotic 
value of any nth virial coefficient is equal to a constant raised to 
the power n -  1. This constant depends only on the nature of gas. 
It is designated Y and called covolume throughout this work. 
Within the parameter range considered in this work, Y"-~ 
provides the sole relevant contribution of the virial coefficients, 
beyond the third, to the residual properties of gases. 

The behavior of B(T) has been observed experimentally for many 
gases and has been investigated within a wide range of temperatures. That 
of C(T) is known within a narrower range of temperatures. Some 
associated examples are compared later in this paper with experimental 
evidence along with the effects of the postulated extensions beyond the 
latter. 

3. THE COMPLETE LEIDEN-TYPE VEOS AND ITS 
COEFFICIENTS 

Using the postulates described above, we can write the VEOS as 
follows: 

(rp) 3 
Z =  1 + Bp+ Cp2 + - (1) 

l -  Yp 

where p represents the density. 
For any selected value of Y, Eq. (1) can be split into experimentally 

accessible terms and a linear function of p, namely, 

(yp)3] 1 B + C p  (2) 
z - 1  i - - -~J -p= 

The function F( Y, p) on the left-hand side of the above equation can be 
used in a linear regression analysis to fred the optimum values of B, C, and 
the associated correlation coefficient, everything as a function of Y. The 
optimum value of Y can be then selected as the one which coincides with 
the maximum value of the said correlation coefficient. 
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The above analysis must, however, be performed simultaneously with 
the selection of the previously described range limits, at least for some 
gases selected as relevant for the determination of such limits, presumed 
universal for all gases. The best experimental data for this purpose are 
those at temperatures above 1.5 times the critical temperatures and at 
densities up to twice the critical densities. Unfortunately, data in this 
parameter range are scarce and the available experimental information can 
be considered as adequate for a few gases only, e.g., He, H2, D2, Ar, N2. 
The analysis described above has been performed for many gases beyond 
this list, but in many cases only a rough approximation of the optimum 
value of Y could be determined. 

3.1. The Temperature Function for Virial Coefficients 

Further regression analyses are necessary to find B and C as functions 
of temperature for each pure gas. First, a formula for these functions must 
be selected. It should be able to represent available experimental informa- 
tion within its tolerances while satisfying the criteria defined in Section 2. 
The following universal function for both B(T) and C(T) has been found 
by trial and error: 

V----=I-\ vcj + f A,,qe -K"qr' (3) 
q~ --oo 

where Tr = T/Tc is the reduced temperature, Tc and Vc are the critical tem- 
perature and volume (for quantum gases their classical values are defined 
by Gunn et al. [2]) of any pure gas, and n = 2  and q are integers. The 
same formula remains valid when B and n = 2 are replaced by C and n = 3. 
The constants A,o to An3 and K,, o in the series on the right-hand side of the 
above equation are determined for each virial coefficient (n = 2 and n = 3) 
by a nonlinear regression analysis of the experimental information. The 
remaining constants are related to these five constants by the following 
formulae: 

If q < 0 and n = 2, then 

If q < 0 and n = 3, then 

Knq = 2qKno (4) 

A 2 q : O  (5) 

A3q = A30(A32/A31) q/2 (6) 
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If q > 0, then the following relation holds for all Anq: 

Anq+3/hnq+2 Anq+2/anq+l 

A,,q+ 2/A,,a + 1 mnq+l/Anq+o 
(7) 

If q > 1, then all constants  A,,q are negative; otherwise, they are positive. 
All values of K,,q are positive. The two sets of five constants and the 
covolume Y, i.e., altogether 11 adjustable constants, describe all molar 
residual properties of each pure gas within the selected parameter limits. 

The series on the right-hand side of Eq. (3) is rapidly converging in 
both directions around q = 0, with rising absolute value of q. It can, there- 
fore, be truncated as soon as the contribution of the remaining terms 
becomes negligible. The number of relevant terms depends, however, on the 
gas, on the number of the virial coefficient and on the temperature. 

The nonlinear regression has been performed for a number of gases, 
initially on B data calculated by the linear regression analysis of experimen- 
tal data for each isotherm. Subsequently, C data from the linear regression 
analysis have been adjusted to deliver the estimated compression factor at 
each temperature near the range 1 (Table I) limit of density. Finally, the 
same kind of analysis as for the B data has been performed on the adjusted 

Table I. Temperature-Dependent Density Limits for the Validity of Eq. ( 1)a 

Temperature 
range 

Density range of molar residual properties 

I H 

Density limits, whichever is less 
for each temperature range 

T <~ Ty~ p~ 
Pys Prs 

0.6p~ 0.9p ~ 

Ty~ < T <<. T~ (if T~> Ty~) p~ 
0.6p~ 0.9p¢ 

T~< 1.5T~ 0.6p~ 0.9p¢ 

1.5 Tc~ < T~< 2Tcc 0.6pc 2pc 

2T,~ < T 1.5pc 2pc 

° c, critical point; yc, apparent critical point (defined in Section 5); ys, stability limit (defined 
in Section 5); s, saturated vapor density; cc, classical critical temperature of quantum gases 
(He, H2, HD,- D2, Ne) and actual critical temperature of other gases. 
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values of C. Up to now the constants A,q and Koq have been estimated 
using the above method for 18 gases. For an additional 40 gases, most of 
them hydrocarbons, all necessary information has been prepared for a dif- 
ferent method of calculation of B, C, and Y, described below. 

3.2. Virial Coefficients from the Law of Corresponding States 

Another procedure can deliver satisfactory results whenever specific 
experimental information is inadequate for the above-described analysis 
and whenever these gases are not strongly polar. In such cases the linear 
relation of Pitzer et al. [ 3-5 ] has been used together with information on 
two gases [indices 1 and 2 in Eq. (8)] with adequately different acentric 
factors to find not only B and Y but also C of a third gas [index 3 in 
Eq. (8)] as a function of its acentric factor co3 This relation has been 
applied using the following equation: 

B3, q,#o(Tr3,603) 0 9 2 - - ( . 0 3  BI,q#o(Trl, COl) B2, q~o(rr2, c02) 
n--  [/ 'n--  I + O " ) 3 - - 0 9 1  [/ 'n--  1 ( 8 )  

V¢  3 I ° )  2 - -  °..) 1 - -e l  ° ° 2 - - ° 9 1  --c2 

where B, Tr, Vc, and co designate, respectively, the second virial coefficient, 
the reduced temperature, the critical volume, and the acentric factor of the 
three gases, each of which bears the above-defined index. The additional 
index q ¢-0, associated with all values of B, indicates that the contribution 
of the term with index q = 0 shall be excluded from the sum on the right- 
hand side of Eq. (3) when B~ and B2 are calculated using this formula. For 
this particular term, the linear relation coefficients (co 2 - 0 9 3 ) / ( 0 9  2 - C O l )  and 
(o)3-col)/(co2-COl) of Eq. (8) shall be applied to the coefficients A,o and 
K,,o instead of the value of the function generated by them; otherwise this 
function would not always fulfill postulate (a) of Section 2 at temperatures 
beyond the maxima of B or C. 

Therefore if the critical parameters and acentric factors of all three 
gases are known and everything appearing on the right-hand, side of 
Eq. (3) is known for the gases labeled 1 and 2, the B(T) of the third gas 
can be found from Eq. (8). As in the case of Eq. (3), B and n = 2 can be 
replaced by C and n = 3. A fair validity of such an extension of the Pitzer's 
postulate has been confirmed by an appropriate inspection of the relevant 
properties of a variety of gases. 

3.3. Temperature Derivatives of the Virial Coefficients and Their Graphical 
Representation 

Not only the virial coefficients but also their temperature derivatives 
are needed for calculation of the various thermodynamic properties. The 
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nomenclature can be simplified if the derivatives of B and C, each multi- 
plied by the appropriate power of the temperature, are designated as 
follows: 

B ' =  TdB/dT B " =  T2dB/dT 2 (9, 10) 

C' = TdC/dT C" = T2dC/dT 2 ( 11, 12) 

Analogous symbols are used for higher derivatives whenever they are 
needed, e.g., for the calculation of some differential coefficients. 

Graphical representation of virial coefficients and their temperature 
derivatives as functions of temperature can be improved if a logarithmic 
temperature scale is used for the abscissa and the following operator Q(X) 
is applied to the ordinate: 

Q(X) = [ sgn(X) ] [In ( 1 + iX[ )] (13) 

where X stands for B or C or any of their temperature derivatives defined 
by Eqs. (9) to (12). For C, C', and C" it has been applied twice, con- 
secutively. 

The ratio of the covolume Y to the critical volume Vc of a number of 
gases investigated by the method described here has beers found to be 
between 0.237 and 0.322. This can be compared with the low-volume (high- 
density) limits of validity of Eq. (1) at high temperatures, namely, between 
0.5 (2) and 0.67 (1.5). These and other limits are summarized in Table I. 
Symbols appearing in this table and not encountered hitherto are explained 
in Section 5. 

4. EXAMPLES OF VIRIAL COEFFICIENTS AND THEIR 
COMPARISONS WITH EXPERIMENTAL AND OTHER DATA 

Two examples of the described method of estimation of the constants 
of Eq. (3) and the associated comparisons of the calculated P V T  data with 
experimental or other data are discussed below. The data from various 
sources are shown by points, whereas solid or dashed lines represent the 
results of this work within ranges I and II, respectively. The abbreviated 
name of each source appears in the legend to each diagram. The figures 
were prepared using the values of the constants summarized in Table II. 

4.1. Argon 

The linear regression analyses of isotherms were performed using 
experimental data (MI) of Michels et al. [6, 7] and of Lecocq [8] for 

840/17/6-12 
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Table II. Constants in Eqs. (7) and  (13) 

Symbol Unit Argon Normal H2 Para-H2 

Critical data (classical for hydrogen) 

Tc K 150.66 43.6 
Vc cm a- mol - 1 75.24 51.5 

Other constants in Eq. (7) 

A20 - -  1.639 03 E -  1 2.713 39 E -  1 

A21 - -  - 8 . 5 0 0  97 E - 2  --2.895 93 E -  1 

A22 - -  - 1.401 32 E - -  1 --3.645 09 E -  1 

A23 - -  - 2 . 6 4 3  61 E -  1 - -5 .742 49 E - -  1 
K2 o - -  3.758 82 E - - 2  8.385 53 E - - 2  

A30 - -  8.177 35 9.254 11 E - -  1 
A3~ - -  --6.448 45 E + 5  - 1.061 84 E + 3  

A32 - -  - 5 . 5 3 2  69 E + 6  - 2 . 9 9 5  96 E + 3  

A33 - -  - 4 . 9 2 0  13 E + 7  --8.453 07 E + 3  

K30 - -  9.448 57 7.545 92 

Y/Vc - -  0.302 0.258 

Constants in Eq. (14) for the vapor-liquid equilibrium 

Po - -  1.581 038 0.273 836 7 0.256 810 4 

Pl - -  - 4 . 7 6 3  781 - 3 . 4 8 8  222 - 3 . 5 8 9  047 

P2 - -  - 0 . 4 9 1  288 2 0.288 941 1 0.346 838 6 

P3 - -  0 0 0 
P4 - -  0.237 258 5 0.395 068 1 0.330 950 4 

temperature ranges from 123.15 to 423.15 and from 573.15 to 1223.15 K, 
respectively. Unfortunately, Lecocq did not report his results at experimen- 
tal densities but instead produced tables generated by his smoothing proce- 
dure. It is shown in Fig. I that these table values are not convenient for the 
method of analysis selected for this work. Therefore, only MI data from 
this figure were used for subsequent nonlinear regression analysis of the 
virial coefficients as a function of temperature. They have, however, been 
completed by data (LE) of Levelt Sengers et al. [9]  at 80, 411.52, and 450 
to 1300 K as well as by the data (PO) of Pope et al. [10],  the only source 
of simultaneous experimental values of B and C at low temperatures. 
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Fig. 1. P V T  residual relations of argon. Comparison of experimental data 
with data of this work. 

Figures 1 to 5 compare not only the said sets of P V T  data, but also 
those (RB) of Robertson et al. [ 11 ] and those (SJ) of Stewart and Jacob- 
sen [ 12], with the results of this work. The importance of the selected 
range limits is evident from these diagrams. It is also shown in Fig. 5 that 
the SJ set of data implies a rather improbable sign and magnitude of C 
below 110 K. 

Figures 6 and 7 compare, respectively, not only the second and third 
virial coefficients from the sources listed above but also those (GO) of 
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Gosman et al. [ 13] and (KE) of Kestin et al.) I-14] with the values accord- 
ing to this work. The temperature derivatives of the virial coefficients are 
incorporated in these comparisons where they are available. It is shown in 
these figures that the agreement among the various sources and this work 
is reasonably good at least for B, B', and B" at supercritical temperatures. 
At lower temperatures the experimental evidence is scarce and the opinions 
of researchers diverge, especially in the case of C, C' and C". The conse- 
quences of this are discussed in Section 7.1. 
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Fig. 3. P V T  residual relations of argon at high temperatures. Comparison 
of experimental data with data of this work. 

4.2. Hydrogen 

Experimental P V T  data (MI) of Michels et al. [15] are shown in 
Figs. 8 and 9 and have been used in this work within their range of tem- 
perature between 98.15 and 423.15 K. The results of their linear regression 
analysis used in this work as inputs to the subsequent nonlinear regression 
analysis of the virial coefficients as a function of temperature are not identi- 
cal to the results derived from the same P VT data by Michels et al. 
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Fig. 4. P V T  residual relations of argon near the critical point. Comparison 
of experimental data with data of this work. 

[ 16] since both methods of analysis differ. The differences can be seen in 
Figs. 12 and 14 (enlarged version of Figs. 11 and 13), where the abbrevia- 
tion MIP designates the values of the virial coefficients determined by 
Michels et al. using their method. Further (WSB) data of Woolley et al. 
[ 17] are shown in Figs. 8 and 10 for temperatures below the range of MI 
data. 

At temperatures near the normal boiling point of normal hydrogen 
there are discrepancies among the estimations of the second virial coef- 
ficient. In particular, at a temperature of 20.4 K, the value of this coefficient 
has been found to be (in historical order) - 1 4 5 , - 1 5 2 , - 1 5 0 ,  and 
- 1 4 5  cm a .mo1-1, respectively, by Woolley et al. [17],  Beenakker et al. 
[ 18], Knaap et al. [ 19], El Hadi et al. [20]. Knaap et al. did not find their 
value by direct experiments but used a slightly higher value than found by 
Beenakker et al. for their relative experiments in the temperature range 
between 20 and 70 K. Therefore, if their reference value is still too low then 
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the values derived therefrom must also be revised. In this work the data 
(EH) of E1 Hadi et al. have been used as a basis of B in their experimental 
temperature range from 19.26 to 23.26 K. As a further input the datum 
(WSB) of Woolley et al. at 600 K has been used. The results of fitting are 
shown in Figs. 11 and 12. The data (MIP) of Michels et al. and (KN) of 
Knaap et al., as well as data (GO0) of Goodwin et al. [21] and (MC) of 
McCarty et al. [22], are also shown. The agreement between the data used 
as a basis and the results of this work is good. Significant differences with 
other data appear mainly in comparison of the temperature derivatives. 

The aforementioned MI data were used as a main basis of the third 
virial coefficient. Below their temperature range and down to the critical 
temperature the input data for the fitting of C were derived from the WSB 
P V T  data near the range I limit. Finally, the temperature at which C is 
zero was selected in agreement with MC data. The agreement between the 
values of C according to this work and the MI data is good, but not so 
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with other sources at low temperatures. In particular, C' and C" near the 
(classical) critical temperature are quite different from GOO and MC data 
(these two data setsare similar below, and identical above, 100 K). Unfor- 
tunately, as mentioned in the MC paper, the tolerances of these data are 
inadequately known. Further adjustments may be made as soon as more 
experimental information is available. 

Measurements of Beenakker et al. [23] show that even at quite low 
temperatures (18.3 and 20.5 K), the differences between the second virial 
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coefficient of para and normal hydrogen do not exceed the tolerances of the 
experimental results, It may, therefore, be concluded (as did McCarty et al. 
[22])  that any difference between the molar residual properties of ortho 
and para hydrogen is below the tolerances of the available information. 
The vapor pressures of para and normal hydrogen are, however, 
significantly different, and perfect-gas properties at low temperatures are 
very different. 
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4.3. The Saturated Vapor Pressure Function in the Examples 

The following universal function has been developed by the author for 
the saturated vapor pressure as a function of temperature: 

I n  (p/po) = P o  +P1,9 + (p202/2) + (p30t3/6) +p4E(O) ( 1 4 )  

where P° is any reference value of pressure, e.g., its unit, ~9 = T/Tc- 1, Po to 
P4 are adjustable constants, and 

E(O)=ff(e-°/~)d~d~ (15) 

Two of the five adjustable constants of Eq. (14), namely, Po and Pl, are 
simultaneously the integration constants of Eq. (15). A description ,of the 
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development of Eqs. (14) and (15) and a discussion of their particularities 
are beyond the scope of this paper. The values of the adjustable constants 
for Ar, para-H2, and normal H2 are, however, listed in Table II, whereby 
it should be noted that for the latter case Eq. (14) delivers the bubble- 
point pressure of a liquid with normal mole fractions of para-H2 and 
ortho-H2. 
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Equation (14) is valid at least within the same range of saturated 
vapor densities as specified in Table I for the whole-gas phase. The results 
of its application appear in some of the diagrams discussed in this section 
as well as in Section 7. 

5. SOME PARTICULAR PROPERTIES OF THE PROPOSED VEOS 

The high-temperature limit of the compression factor Z calculated by 
Eq.. ( 1 ) can be represented by the following simple formula, in which B and 
C are replaced by their corresponding limits: 

1 
lim Z = - -  (16) 

r-o~ 1 -  Yp 

The above equation is identical to that of van der Waals and some 
other cubic EOS if their terms associated with the attractive intermolecular 
forces are omitted. The temperature-independent constant Y is identical 
with the covolume appearing in cubic EOSs. 

One conclusion from Eqs. (1) and (16) could be that p has an upper 
limit [p  < ( l /Y) ] ,  but none of these equations is valid up to this limit as 
may be seen, e.g., from Figs. 2 and 3. A better conclusion is, therefore, that 
the covolume in the VEOS considered here appears as a constant only as 
far as it is not approached too closely. Beyond such approach the VEOS 
(I) becomes invalid since p can rise significantly beyond l/Y, while both 
the compression factor and the pressure remain finite. At some moderately 
high pressure, the hitherto apparently rigid covolume yields and the further 
rise of the pressure is significantly reduced until the volume reaches a value 
well below Y. Some of the associated research has been described by Ross 
and Young [ 24]. 

Equation (1) defines the compression factor Z in terms of a third 
degree polynomial and the pressure P = ZRTp in terms of a fourth-degree 
polynomial in density p. The latter has only one root at which 
O<p<(1/Y),P>O,(OP/Op)r=O, and (02P/Op2)r=O. The above condi- 
tions are designated by indices yc, and the associated parameters are called 
apparent critical point parameters below. They are not very different from 
experimental critical conditions but they cannot be forced to coincide with 
the latter by modifying the coefficients on the right-hand side of Eq. (1). In 
particular, it can be shown that the lowest value of Zyc is 1/3 (if Y= 0), 
and this is higher than the maximum observed value of the critical com- 
pression factors Zc. 

All density limits retained for the validity of the suggested VEOS 
within the mentioned density ranges I and H are specified in Table I. 

840/17/6-13 
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Below the apparent critical temperature Ty c a locus of densities Pys(T) 
can be found, so that 0 <Pys <Pyc, Pys(Pys, T) < Pyc, (OPys/OP)r=O, and 
(c3~-eys/Op 2) < 0. This is the locus of maximum stable densities which can be 
represented by Eq. (1) below the apparent critical temperature. It is called 
the stability limit below [more precisely: absolute stability limit beyond 
which (OP/Op)r<O within a parameter range, most of which is usually 
occupied by a metastable subcooled vapor]. The densities Pys, calculated 
by the VEOS (1), are usually, but not always, higher than the saturated 
vapor densities. The stability limit then coincides with the metastable sub- 
cooled vapor limit, which has been simultaneously selected as the range II 
limit for temperatures below Ty¢ and for densities below 0.9 of the critical 
density. The scarce experimental data on subcooled vapors are in fair 
agreement with the data extrapolated using Eq. (1) within the limit 
described above. 

The stability limit, calculated using the VEOS (1), can cross the 
saturated vapor line near the critical point and may even do so below the 
fraction of the critical density selected as the range I limit for the saturated 
vapor. In such cases Eq. ( 1 ) cannot describe the saturated vapor properties 
at densities exceeding the value at the crossing point. Both range limits 
may coincide between the crossing point and the maximum density selected 
for the range I limit if the latter exceeds the density at the crossing point. 
In examples illustrated in Figs. 1, 2, 4, and 5, this is not yet the case. It 
would become so if the dotted line crossed the dashed-dotted line to the 
left of the range I limit. 

If the density exceeds the stability limit, described above, (OPJOp)r 
becomes negative, and at least the initial part of the associated range 
becomes inaccessible for experiments. The suggested VEOS does not 
attempt to describe anything beyond this limit, e.g., to define the properties 
of saturated or compressed condensed phase(s). Section 9 includes some 
further discussion of the associated questions. 

6. MOLAR RESIDUAL THERMODYNAMIC PROPERTIES 

Any real-gas property can be split into two additive terms namely, the 
perfect and residual terms. The former, usually much better known than 
the latter, are defined for the purpose of this work at any set of parameters 
as properties of such a hypothetical gas which would remain perfect when 
either its density or its pressure rises isothermally from a low value to the 
actual value. The selection of this low value is such that all deviations of 
a real gas from a perfect one become negligible. This definition, similar but 
not identical to the usual standard state definition, serves as a tool for 
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a sharp comparison of results, calculated by the suggested VEOS, with 
experimental data or with data based on other EOSs. It includes the per- 
fect-gas contribution of the real-gas density or pressure in the perfect-gas 
entropy. This contribution is independent of EOS and, therefore, could 
blur the relevant magnitude of relative differences among the residual ther- 
modynamic properties calculated by different methods or between any such 
sets of data and the experimental evidence. 

As already mentioned, all molar residual properties can be calculated 
using the universal functions written in the previous sections and only 1 1 
adjustable constants for each pure gas. The above number is reduced to 
one single constant, namely, the acentric factor 09, if the calculation is per- 
formed using Eq. (8). 

The properties of a perfect gas, defined at the same density as the real 
gas (for an isochoric comparison with the properties of the latter), are dif- 
ferent from those which are defined at the same pressure (for an isobaric 
comparison). The residual properties must, therefore, also depend on the 
above selection since the sum of both terms must be identical in both cases. 
In the comparisons discussed later the isochoric comparisons are used 
whenever experimental or other values of internal energy, internal free 
energy (Helmholtz function), entropy, or isochoric heat capacity are 
known as functions of density (or volume). Accordingly, the isobaric com- 
parisons are used whenever such values of enthalpy, free enthalpy (Gibbs 
function), entropy, or isobaric heat capacity are known as functions of 
pressure. 

Pressure and density are interrelated by Eq. (1); either can, therefore, 
be found if the other is known within the selected range H limits, except if 
the density sought coincides precisely with the stability limit. Any of the 
sets of the thermodynamic properties listed above is also related to the 
other set by well-known formulae. The explicit formulae for calculation of 
the molar residual properties have been derived using this basis and the 
well-known relations of thermodynamics. They are available to interested 
readers upon request. 

7. EXAMPLES OF MOLAR RESIDUAL THERMODYNAMIC 
PROPERTIES AND THEIR COMPARISONS WITH 
EXPERIMENTAL AND OTHER DATA 

A number of experimental values of molar residual properties of gases 
has been compared with data calculated by the formulae in this work. 
A few examples are described below. As in the case of the P VT data, values 
of the molar residual properties according to this work are shown in 
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diagrams by solid and dashed lines within the previously defined ranges I 
and II, respectively, whereas experimental data from other compilations are 
represented by points. 

7.1. Argon 

Molar residual isochoric heat capacity, internal energy, and entropy 
originating from compilations of Angus et al. (AN) [25] and of Stewart 
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and Jacobsen (SJ) [ 12] have been compared with data (Q) from this work 
in Figs. 15 to 17. The agreement is fair, except for the most important 
values, namely, those of the molar residual isochoric heat capacity. 

At temperatures below 110 K the available experimental information 
is inadequate to deduce therefrom the values sought. Hence all data shown 
are extrapolated. It is, however, unlikely that the molar residual isochoric 

o 
o v 
C~ 

.~. - 0 . z  

+ 
-0.4 

tD 
N -o.e 

i 

.~. -o .s  

o 

o 

I 

-0.5 

-I 

-] .6 

.......,--"" 

ARGON 40 
RESIDUAL THERMODYNAMIC PROPERTIES 
BELOW THE CRITICAL TEMPERATURE 
DENSITIES 1 TO I0 rnol.drn -s 

~ - - - " ~  RESIDUAL INTERNAL 
='-'~--'~,~-" ~ _  ENERGY FUNCTION 

Q 148 o SJ 148 -""""':'~'~"~'~"" ÷Q 140 +Sa 140 ~-"~'Z" ~ ~ ' ~  ~PT~tATED 

= q iS0 • SJ 130 "x x~..~ 

* Q 120 . s~  I~0 ........................................... ~ -'..~,..~.... 

q - hn~ES ARE ~tR~D SUBCOOLED VAPOR LIMIT "-.'.. 
AT A DENSITY 8 tool.din -s "'%.. 

1.5 

i11 

o 

I 
~. 0.5 u 

/ ". 
RESIDUAL ISOCHORIC / "'... o 
HEAT CAPACITY / / -... 
WITH ADDITIONAL LEGEND / / / "-- ........ ;,"" 

/ / /o / 
G AN I z 0  / /  / /  / "  / 

x AN 130 /I / ++ /0//~.~'~'/ 
~( / // 

AN 140 e" / "" ~'J'~'/ 

/ I _. -~- 

• • + 

, , , i 

Density D. mol-dm -z 
lO 

Fig. 16. Residual thermodynamic properties of argon. T<Tc; l < p <  
10 mol. dm -s. Comparison of data compiled by others with data of this work. 



1414 Silberring 

heat capacities assume negative values in this temperature range, as follows 
from the SJ formulations. Such results are rather a consequence of the 
improbable excursions of the extrapolated temperature derivatives of 
the third virial coefficient shown in Fig. 7. The authors have detected the 
problem and have excluded the associated data from their tables. They 
remain, however, implied in the tabulated values of the internal energy, 
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enthalpy, and entropy. AN data, deduced from but not fully identical to 
data of Gosman et al. [ 13], specify molar residual heat capacities near zero 
in this temperature range, and this is in agreement with the results of this 
work. 

At higher temperatures most data in this work are situated between 
the AN and SJ values. 
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7.2. Hydrogen 

Hydrogen properties have been extensively investigated, and accor- 
dingly, a better precision of well compiled molar residual properties than 
in the case of many other gases can be expected. In this case the molar 
residual isobaric heat capacity, enthalpy, and entropy have been plotted as 
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functions of pressure in Figs. 18 to 20 to compare them with data (MC) of 
McCarty et al. [22], specified in their tables also along isobars. 

The differences between the MC values of the temperature derivatives 
of the third virial coefficient and the corresponding values of this work near 
the classical critical temperature (Fig. 13) did not significantly affect the 
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good agreement of molar residual isobaric heat capacity in both sets of 
data. In fact, the sign of both differences is opposite and their absolute 
values are nearly inversely proportional to their contributions to the rele- 
vant function, so it remains difficult to find out which values of virial coef- 
ficients are nearer the truth. 

At high temperatures and pressures the differences between both com, 
pared sets of data are significant. The smoothness of isochores (not shown) 
according to this work seems better than for MC data, but in any case, 
more and more reliable experimental information is necessary to improve 
the precision of molar residual properties in this range. 

8. DIFFERENTIAL COEFFICIENTS 

A number of other thermodynamic properties of any pure gas or any 
mixture of them, in particular various differential coefficients, sound 
velocity, etc., can be calculated on the basis of equations given in the pre- 
vious sections. Some such coefficients are useful in fluid dynamics and have 
been defined, among others, by Eichelberg [26], Dzung [27, 28], Flatt 
[29, 30], and Flatt and Trichet [31]. The associated explicit formulae, 
which follow as far as applicable the definitions and the notation in the 
above references, are available to readers upon request. 

9. OUTLOOK 

The author's intention is to continue the extension of the coverage of 
properties of matter by his work initiated in the 1980s. 

The already mentioned next step, namely, the extension to mixtures 
has been prepared and may appear soon. A further step is well advanced 
and may also be published in a separate paper. It consists of an extension 
to properties of the saturated condensed phase(s), liquid or solid, below the 
critical temperature. For this purpose and for pure substances it is 
necessary and adequate to use two additional functions, namely, the 
saturated vapor pressure P(T), mentioned in Section 4, and the density 
ps(T) or volume Vs(T) of the saturated condensed phase(s), each as a func- 
tion of temperature. Both these functions are well accessible for 
experiments and ample experimental information is available on many sub- 
stances over a wide temperature range. A variety of equations has been 
proposed for them; a universal function P(T), introduced in Section 4.3 
without details of its development, will be described elsewhere by the 
author. All thermodynamic properties of the condensed phase(s),of pure 
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substances, each in equilibrium with its vapor can be calculated using the 
above information and the general relations of thermodynamics, in par- 
ticular, the Clausius-Clapeyron equation. 

For further extension to the ranges of compressed condensed phases, 
an EOS for the latter is necessary. The pressure explicit form of VEOS is 
not suitable for this objective, and at least below the critical temperature, 
the necessary EOS need not be of the same type as the one selected for the 
gas phase. 

The agreement between the experimental data at high temperatures and 
densities and data calculated using a VEOS similar to Eq. (1) could be 
improved by using a temperature-dependent fourth and possibly even higher 
virial coefficients instead of the powers of the temperature-independent 
covolume. The available experimental information under the said conditions 
is, however, inadequate for selection of an appropriate universal function 
and for determination of its coefficients. Such improvements must, therefore, 
wait for additional experimental data. 

As already mentioned, the coverage of the present work, including its 
above described easy extensions, still leaves an important gap in the 
parameter space of interest. This gap starts at a subcritical temperature 
above which neither VEOS (1) is good enough for the properties of the 
saturated vapor nor is any other analytical EOS satisfactory for the proper- 
ties of any phase. When the temperature rises to about 1.5 to 2 times the 
critical value, the gap ends and VEOS (1) with its possible improvements 
can again deliver satisfactory data. Between the above temperature limits 
the applications of VEOS must remain below the critical densities. 

The said limits of the parameter space cannot be significantly extended 
by modification of, or by complements to, VEOS without violation of one 
of the postulates listed in Section 2. As already mentioned, even if these 
postulates were abandoned, it remains impossible or at least difficult to 
describe correctly the properties of gases over a significant range of tem- 
peratures and densities around the critical point by VEOS or by any other 
analytical EOS. 

For many years the traditional development of various EOS has been 
governed by a tendency to approach the critical point as closely as 
possible. This has been achieved by a number of complements and 
modifications to the original form of the VEOS. In this process, the 
proposed forms of EOSs became complex. More importantly, the ability to 
deduce the properties of mixtures and the partial molar properties of their 
components from the properties of pure gases has been lost or, at least, 
impeded. The associated disadvantages became evident not only near the 
critical point, but also in the parameter space in which the original VEOS 
would be good enough. 
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Nonanalytical parametric functions have been developed for the sur- 
roundings of the critical point of some pure fluids, e.g., by Vicentini- 
Missoni et al. [32] for CO2, Xe, and 4He, by Levelt Sengers et al. [33] for 
3He, 4He, Xe, CO 2, 0 2, and H20,  by Angus et al. [34] for CO_,, and by 
Kestin et al. [35] for H20.  A review of the associated research has been 
published by J. V. Sengers et al. [36]. A narrow range of the critical region 
has been traditionally selected, with the aim of completing some of the 
earlier, usually quite complex, analytical EOSs for the same gas. 

The nonanalytical parametric functions can cover the entire gap of the 
parameter space described above. In such a case the abilities of the original 
VEOS for gas mixtures can be conserved, at least in the remaining 
parameter space, restricted as specified in Table I. Furthermore, it would 
be very useful if at least some conclusions for gas mixtures could be 
deduced from the parametric functions valid for pure fluids. Recent 
research in this area, reported by Sengers et al. [37-40], looks promising 
for this purpose. 

As mentioned in Section 5, additional complements to the VEOS are 
mandatory to make it valid for the properties of fluids at densities exceed- 
ing 1.5 to 2 times the critical density. 

The experimental basis of the second virial coefficient expressed by 
Eq. (3) can be widened. This equation is useful for calculation of not only 
the zeroth but also any subsequent temperature derivative of the virial 
coefficients. From all of the latter, the intermolecular potential of forces 
between the pairs of molecules can be found by inverse Laplace trans- 
formation as pointed out by Mason and Spurting [41]. Subsequently, 
transport properties at moderate densities can be calculated therefrom and 
compared with experimental data. Afterward, the form and the coefficients 
of the Eq. (3) can be improved as deemed necessary. 

Some considerations may be useful with a view to improving the 
experimental basis for the scrutiny of properties of fluids. Most of the 
available experimental data on residual properties of gases is centered on 
the P V T  relationship. This has certainly been inspired by simple access of 
such data for experimentation and by James Clerk Maxwell, who has 
shown that everything else can be found therefrom by differentiations. The 
latter would be easy to perform if the available experimental information 
could be fitted into reliable and sufficiently precise analytical functions. But 
this is not the case, and consequently, important losses of precision occur 
when residual thermodynamic properties are derived from experimental 
P VT  data, even if the precision of the latter is high. 

The other way round may lead to better results. Such molar residual 
properties as isobaric or even isochoric heat capacities, the Joule-Thomson 
coefficient, the speed of sound, and the like are experimentally accessible 
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and have already been used to some extent for scrutiny of all properties, 
including the testing of experimental P V T  data. The mathematical opera- 
tions necessary for this route may be more complex than for the usual 
methods. It would be necessary to solve sets of partial differential equa- 
tions, sometimes by numeric methods, and the associated integration con- 
stants must also be found somehow. If all the pros and cons of both ways 
are considered, then the present, rather poor knowledge of such properties 
as, e.g., the residual heat capacities, could probably be improved by switch- 
ing the focus of experimentation rather than by attempting to raise the 
precision of the prevailing methods of experiments. Probably better P V T  
data might also be achieved as a by-product of such switching. 
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